Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles

نویسندگان

  • Tudor Braniste
  • Ion Tiginyanu
  • Tibor Horvath
  • Simion Raevschi
  • Serghei Cebotari
  • Marco Lux
  • Axel Haverich
  • Andres Hilfiker
چکیده

Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle-cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Environmental 50Hz Magnetic Fields Can Increase Viability of Human Umbilical Vein Endothelial Cells (HUVEC)

Introduction Over the last decades, considerable levels of electromagnetic fields (EMFs) have been characterized in the living environment. Recent epidemiological studies on occupational and residential exposure to EMF have shown that 50/60 Hz fields, known as extremely low frequencies (ELF), have various biological effects, such as angiogenesis. This study aimed to investigate the effect of en...

متن کامل

Effects of RF-EMF Exposure from GSM Mobile Phones on Proliferation Rate of Human Adipose-derived Stem Cells: An In-vitro Study

Background:As the use of mobile phones is increasing, public concern about the harmful effects of radiation emitted by these devices is also growing. In addition, protection questions and biological effects are among growing concerns which have remained largely unanswered. Stem cells are useful models to assess the effects of radiofrequency electromagnetic fields (RF-EMF) on other cell lines. S...

متن کامل

Anticancer Effects of Moderate Static Magnetic Field on Cancer Cells in Vitro

Background: Expansion of the use of magnetic fields in metals, mining, transport, research, and medicine industries has led to a discussion about the effects of magnetic fields and whether their strength is negligible. The aim of this study was to investigate the effects of magnetic field on the viability and proliferation rate of HeLa cells. Materials and methods: We studied the effects of ma...

متن کامل

In-vitro study of Radioprotection Effects of Cerium Oxide Nanoparticles in Exposure to MRC-5 Fibroblastic Cell lines with 6MV Photon Beams Using MTT Assay

Introduction: Recently Cerium oxide nanoparticles (CONPs) are being checked as interventional treatments in biological systems. The scavenging of free radicals by nanoparticles performance is the inhibition of Reactive Oxygen Species (ROS). Ionizing radiations can prevent the proliferation and differentiation of cells and even cause apoptosis. CONPs, as radioprotection, can pro...

متن کامل

Investigating Anticancer Effects of Silver Nanoparticles on Bladder Cancer 5637 Cells in Comparison to Human Embryonic Kidney Normal Cells (HEK-293)

Background & aim: Nanotechnology is a modern research field with broad applications in cancer management. Among the various metal nanoparticles, silver nanoparticles (AgNPs) have been used in cancer therapy due to their promising anti-tumor properties. Despite the great advantages of AgNPs, their effects on normal cells have become a challenge. Besides, their anti-cancer effects have not previo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016